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Chain Matrix Multiplication

« Given a sequence or
chain A, A,, ...,A,of n
matrices to be
multiplied, then How to
compute the product
AA,.. A
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Idea

Matrix Multiplication is
not commutative. That is
AB # BA.

But Associative
(AB)C = A(BC)

But, There are many
possible ways of placing
parenthesis




Matrix Multiplication cost

[%

4,,.,and B, (with dimensions mxn and nxr)

(2] ]

11 12

N

Number of scalar multiplications = mnr



Cost of Multiplication

[au a:z][bn btz] ) [aubn* Qb 8yb g+ a by,
) -

8g 8g)lby by QgD+ Agby Apub,+ agb,,
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Algorithm Segment

Input: Matrices 4,,., and B, (with dimensions mxn and nxr)
Output: Matrix C,, . resulting from the product 4-B

nxr

fori<—1tom
forj— 1tor
Cli,j] <O
fork<— 1ton
Cli, j] < Cli, j]1 + Ali, k] - Blk, j]
return C  Number of scalar multiplications = mnr
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Why Order Matters?

Example: Consider three matrices A, ;, B4,
and C4><5.

There are 2 ways to parenthesize

— ((AB)C) =Dy,4 - Cyys
e AB = 2 x3 x4 =24 scalar multiplications
e DC=2x4x5=40scalar multiplications
 Total =24 + 40 = 64 multiplications.
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— (A(BC)) = A, " Ess
e BC=3x4x5=60scalar multiplications
e AE = 2x3x5=30scalar multiplications
 Total =60 + 30 =90 scalar multiplications.

e So cost and order matters !!




Examples 13.9 - Let us consider the following three matrices:
£2x3 B3xt Cdxbs
What are the possible orderings? What 1s the optimal order?
Solution  Three matrices are given. Hence, two possible orderings are possible. The possible
orderngs for three matrices are ((48)C) and (4(BC)). The cost of multiplying two matrices
A ) and B X k)1sixjxk
[(4B)C]=(2x 3 x4)+ (x4 x5)=24+40=64
[ABC)|=(3x4x5)+(2x3x5)=60+30=90
Hence, the optimal order is [(4B)C].
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Ay (A, A,)
(A} A, Ay )

(A, Ay Ay 1 VA,
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Example

Example: consider the chain A, A,, A;, A, of

4 matrices. Then possible ways:

1.
4

(AL(A(A3A))) 2. (A((AA3)A)) 3. ((ALA)(AsA,))
. ((AAA3))AL) 5. (((ALA)A3)A,)




Catalan Sequence

It can be observed that the mumber of possible resulting trees is a Catalan number. As
discussed earlier in Chapter 6, the n** Catalan number C, is given as follows:

. 1
C,=—
. n+l

1 ifk=1

s
“"| forn 20
n

\

L= n-1
Stitpny k22
k=l

This leads to a sequence called Catalan sequence
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Need for Optimization

* Optimization is necessary !

Givena chain A}, A,, ..., A, of n
matrices, where for i=1, 2, ..., n,
matrix A, has dimension p. ;xp;

Parenthesize the product A A,...A,
such that the total number of
scalar multiplications is minimized
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Recursive Definition

Recursive definition of the value of an
optimal solution
— Let C[j, j] be the minimum number of

scalar multiplications necessary to
compute A, ;

— Minimum cost to compute A;  is
Cl1, n]

— Suppose the optimal parenthesization
of A, ; splits the product between A,
and A,ﬁl for some integer k where i < k
<J
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Why Order Matters?

A,z Bag, @Nd Cyus yith dimensions A(PO,P1), B(P1,P2), C(P2,P3)

(A(BC)) = (k=1)
C[1.3] = C[1,1] + C[2.3] + Po-P1-P3

* ((AB)C) = (k=2)

C[1.3]=C[1.2] + C[3.3] + Po-P2Ps

Finally, it is a choice between k=1 and k =2
Thus, OPTIMIZATION ! As Minimize cost!
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Recursive Formulation

C[II.I] - C[II k] + C[k+1l.l] + pi-lpkpj

fori<k<j

— (li,i]=0fori=1,2,...,n (Initial
Condition)
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Optimization Problem

Cli,j 1 = {

0 if =
min {C[i, k] + C[k+1, ]+ p,1pi p; }

I <k<j

if i<j




Overlapping subproblems
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Informal Algorithm

Read n chain of matrices
Compute Cl[i,j] recursively and fill the table

Compute R[i,j] to keep track of k that yields
minimum cost

Return M[1,n] as minimum cost.
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Formal Algorithm

Algorithm dp_chainmult(p,n)
Begin
fori=1ton do
Cli,jl=0
end for

for diagonal = 1 to n-1
for i =1 to n-diagonal
J =1+ diagonal
Cli,j] =
\_ for k= 1toj-1do
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Formal Algorithm

if C[i.j]< C[i, k]J+C[k+1,j]+ p_xp,xp, then

Cli,jl=C[i, k]+C[ k+1,j]+ p,_ xp,xp,
R[i,j]=k
else
Cli,j] = C[i,]
R[i,j] =k
End if
End for
End for
end for
return C[1,n]

N J
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Example

Perform chained matrix multiplication.

A | 8 [ c | o |
B 52 <2 2x7
- P,P, PPy PP,
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Example

C[1,11=0;C[2,2]=0; C[3,3]=0; C[4,4]=0

Table 1: Initial Table

o] | | |
o

- 0

. 0
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Time complexity

C[1,2)=C[L1] +C[2,2] + Po:Py-Py
=0+0+4x35x3=60
C[23]=C[2.2] + C3.3] + PPy by
=0+0+5x3x2=30
C[34)=C[3,3] + C[4,4] + PyPsPy
=0+0+3x2x7=42
Table 2: After First Diagonal

o | 60 | |
- 0 30

- Y
1 0
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C[1,3] = C[L,1] + C[2,3] + Py-P1-P3 Table 3: After second
=0+30+4X5x2 . )
=30+40=70 (k=1) diagonal computation

C[1,3]=C[1,2] + C[3,3] + Py-P,-P3
—60+0+4X3 X2
=84 (k=2)

The minimum is 70 when k=1

C[2,4]=C[2,2] + C[3,4] + P1-P2-Py4
=0+42+5%x3x%x7
=42+105=147 (k=2)

C[2,4] =C[2,3] + C[4,4] + P;-P5-P4
=30+0+5%x2x7
=30+70=100 (k=3)

[ 0 [e0 [ 70|
- 0 30 100
- 0o 4
] 0

Qhe minimum is 100 when k = 3. The matrix now appears as Table 3.
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-

Now, C[1,4] is computed. Table 4: Final Table

C[14]=C[L,1] + C[2,4] + Po-P1-P4 el o 30 100
=0+100+4x5x%7 - 0 42
=100+ 140 =200 (k=1) [

C[1,4]=C[1,2] + C[3,4] + Po-P2-P4 Table 5: Table of minimum k

—60+42+4X3XT
=60 +42+84=186  (k=2) N

C[1,4] = C[1,3] + C[4,4] + Po-PyPy I ECH N
“70+0+4Xx2X7 L] .
=70+56 =126 (k=3) ] °

[A (B C) D]
The minimum is 126 and this happens when k = 3.




Example

Examples 13.11 Consider the following four matrices whose orders are given and perform
chain matrix multiplication using the dynamic programming approach.
A B C D
4x5 5x3 3x2 2x7
PoPr PPy PaPs P3Ps

Solution Four matrices are given. A table M is created to store the intermediate results. As
per the algorithm, the entries of matrix M are initialized as follows:

M1, 1]=0; M[2, 2] =0; M[3, 3] = 0; M[4,4] =0

The resultant Table 13.16 is an initial table. Table 13.16 Initial table
Now, let us compute the first super diagonal as follows: 0
M[1,2]=M[1, 1]+ M[2,2] +p, " p1 " P> 0
=0+0+4x5%x3=60 g
M[2,3]=M[2,2] + M[3,3] +p, Py ps g

=0+0+5%x3%x2=30

M[3,4]=M[3,3] + M[4,4] +p, " ps "4
=0+0+3x2x7=42



The resultant table is Table 13.17. Table 13.17  After first
Next, the second super diagonal needs to be computed. This implies diagonal

that M[1 ... 3] needs to be computed. Two splits are possible, with k=1 [ 5" [ &g
and £ = 2. The resulting computation is as follows: 0 | 30
M[1’3]=M1! 1]+M[233]+P0'p1-p3 0 42
=0+30+4x5%x2 0

=30+40=70 (k=1)
M[1,3]=M[1,2]+M[3,3] +po P> ps
=60+0+4x3x%x2
=84 (k=2)
The minimum is 70 when & = 1 Therefore, this must be noted in another table R. Thus,
table R records & that gives the minimum cost. This process is repeated for other possibilities:

M2, 4] =M[2,2] + M[3,4] +p, P> " P4
=0+42+5%x3x%x7
=42+105=147 (k=2)

M[2, 4] =M[2,3] + M[4,4] + p, " ps " ps
=30+0+5%x2x%x7
=30+70=100 (k=3)

The minimum is 100 when & = 3.



The resultant matrix now appears as shown in Table 13.18.  Table 13.18  After second
Now, M[1, 4] is computed. There are three possible splits for . ~super diagonal computation

The possible splits and the resultant computation are as follows: ol 6 | 70
M1, 4]=M[1, 1]+ M2, 4] + po py" P4 0| 30 |100
=0+100+4x5x7 AR
0

=100+ 140=200 (k=1)
M1, 4]=M1,2]+ M[3,4] * py" ;" P4
=60+42+4x3%x7
=60+42+84=186  (k=2)
M1, 4]=M[1, 3]+ M[4, 4]+ py" b5 P4
=70+0+4x2x7
=70+56=126 (k=3)

It can be observed that the minimum cost is 126 and this happens when £ = 3.
The resultant matrix 1s given in Table 13.19.



As mentioned earlier, aIl values of & that yields the minimum cost 1s recorded in table R.
The final resultant table that records the minimum £ is Table 13.20.

Table 1319 Finaltable Table 13.20 Table R of

o1& 170 | 15 minimum k
030 | 100 o113
0l 4 01213
0 013
0

It can be observed that R(1, 4) is 3. Hence, the split is at point £ = 3. This gives the order
((4BC)D). To split ABC, check R(1, 3); 1t 1s 2. Therefore, the final chain of matrix can be

now represented as follows:

[4(BC)D]



Trace of k

Step 1: Read the trace matrix R that has minimum &, which yields the minimum cost.
Step 2: Perform recursive call as follows:
If (i # ) then

k=R[i.j]

retumn (mult(R; ) x mult(Re-; )

else

return(R(. j)
Step 3: End.



Complexity analysis

There are three for-loops in the algorithm, and each loop is executed » times. Therefore, the
complexity of the algorithm is @(n°).
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Time complexity

Takes O(n3) time

Requires O(n?) space




