

Chain Matrix Multiplication

Given a sequence or chain A₁, A₂, ..., A_n of n matrices to be multiplied, then How to compute the product A₁A₂...A_n

Idea

- Matrix Multiplication is not commutative. That is AB ≠ BA.
- But Associative (AB)C = A(BC)
- But, There are many possible ways of placing parenthesis

Matrix Multiplication cost

 $A_{m \times n}$ and $B_{n \times r}$ (with dimensions m×n and n×r)

Number of scalar multiplications = mnr

Cost of Multiplication

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

Algorithm Segment

Input: Matrices $A_{m \times n}$ and $B_{n \times r}$ (with dimensions m×n and n×r)

Output: Matrix $C_{m \times r}$ resulting from the product $A \cdot B$

for $i \leftarrow 1$ to m

$$\begin{aligned} \mathbf{for} \, j &\leftarrow 1 \, \mathbf{to} \, r \\ & C[i,j] \leftarrow 0 \\ & \mathbf{for} \, k \leftarrow 1 \, \mathbf{to} \, \mathbf{n} \end{aligned}$$

$$C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$$

return C Number of scalar multiplications = mnr

Why Order Matters?

- Example: Consider three matrices $A_{2\times 3}$, $B_{3\times 4}$, and $C_{4\times 5}$.
- There are 2 ways to parenthesize
 - $((AB)C) = D_{2\times 4} \cdot C_{4\times 5}$
 - AB \Rightarrow 2 x 3 x4 = 24 scalar multiplications
 - DC \Rightarrow 2 x 4 x 5 = 40 scalar multiplications
 - Total = 24 + 40 = 64 multiplications.

Another Way

- (A(BC)) = $A_{2\times 4} \cdot E_{3\times 5}$
 - BC \Rightarrow 3 x 4 x 5 = 60 scalar multiplications
 - AE \Rightarrow 2 x 3 x 5 = 30 scalar multiplications
 - Total = 60 + 30 = 90 scalar multiplications.
- So cost and order matters !!

Examples 13.9 Let us consider the following three matrices:

What are the possible orderings? What is the optimal order?

Solution Three matrices are given. Hence, two possible orderings are possible. The possible orderings for three matrices are ((AB)C) and (A(BC)). The cost of multiplying two matrices $A(i \times j)$ and $B(j \times k)$ is $i \times j \times k$.

$$[(AB)C] = (2 \times 3 \times 4) + (2 \times 4 \times 5) = 24 + 40 = 64$$
$$[A(BC)] = (3 \times 4 \times 5) + (2 \times 3 \times 5) = 60 + 30 = 90$$

Hence, the optimal order is [(AB)C].

N Order

$$A_{1}\{A_{2},...,A_{n}\}$$

$$\{A_{1}A_{2}\}\{A_{3},...,A_{n}\}$$

$$\vdots$$

$$\{A_{1},A_{2},...,A_{n-1}\}A_{n}$$

- Example: consider the chain A_1 , A_2 , A_3 , A_4 of 4 matrices. Then possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$ 2. $(A_1((A_2A_3)A_4))$ 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$ 5. $(((A_1A_2)A_3)A_4)$

Catalan Sequence

It can be observed that the number of possible resulting trees is a Catalan number. As discussed earlier in Chapter 6, the n^{th} Catalan number C_s is given as follows:

$$C_n = \frac{1}{n+1} \binom{2n}{n} \text{ for } n \ge 0$$

$$t_k = \begin{cases} 1 & \text{if } k = 1 \\ \sum_{k=1}^{n-1} t_k t_{(n-k)} & \text{if } k \ge 2 \end{cases}$$

This leads to a sequence called Catalan sequence :

Need for Optimization

- Optimization is necessary!
 - Given a chain A_1 , A_2 , ..., A_n of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product A₁A₂...A_n such that the total number of scalar multiplications is minimized

Recursive Definition

- Recursive definition of the value of an optimal solution
 - Let C[i, j] be the minimum number of scalar multiplications necessary to compute A_{i..j}
 - Minimum cost to compute $A_{1..n}$ is C[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k$ < j

Why Order Matters?

 $A_{2\times3}$, $B_{3\times4}$, and $C_{4\times5.$ with dimensions A(P0,P1), B(P1,P2), C(P2,P3)

$$(A(BC)) = (k=1)$$

 $C[1,3] = C[1,1] + C[2,3] + P_0 \cdot P_1 \cdot P_3$

• ((AB)C) = (k=2)

$$C[1,3] = C[1,2] + C[3,3] + P_0 \cdot P_2 \cdot P_3$$

Finally, it is a choice between k=1 and k =2 Thus, OPTIMIZATION! As Minimize cost!

Recursive Formulation

$$C[i, j] = C[i, k] + C[k+1, j] + p_{i-1}p_k p_j$$

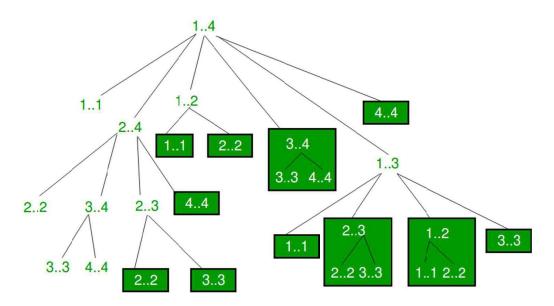
for $i \le k < j$

- C[i, i] = 0 for i=1,2,...,n (Initial
Condition)

Optimization Problem

$$C[i, j] = \begin{cases} 0 & \text{if } i=j \\ \min \{C[i, k] + C[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j \end{cases}$$

Overlapping subproblems



Informal Algorithm

- Read n chain of matrices
- Compute C[i,j] recursively and fill the table
- Compute R[i,j] to keep track of k that yields minimum cost
- Return M[1,n] as minimum cost.

Formal Algorithm

```
Algorithm dp_chainmult(p,n)
```

Begin

```
for i = 1 to n do
C[i,j] = 0
end for

for diagonal = 1 to n-1
for i = 1 to n-diagonal
j = i + diagonal
C[i,j] = \infty
for k = 1 to j-1 do
```


Formal Algorithm

```
if \ C[\ i,j\ ] < \ C[\ i,k\ ] + C[\ k+1\ ,j] + \ p_{i-1} \times p_k \times p_j \ \text{then}
C[i,j] = C[\ i,k\ ] + C[\ k+1\ ,j] + \ p_{i-1} \times p_k \times p_j
R[i,j] = k
else
C[i,j] = C[i,j]
R[i,j] = k
End \ if
End \ for
End \ for
end \ for
```


Perform chained matrix multiplication.

Α	В	С	D
4 × 5	5 × 3	3 × 2	2 × 7
P_0 P_1	$P_1 P_2$	P_2 P_3	P_3 P_4

C[1,1] = 0; C[2,2] = 0; C[3,3] = 0; C[4,4] = 0

Table 1: Initial Table

Time complexity

$$C[1,2] = C[1,1] + C[2,2] + P_0 \cdot P_1 \cdot P_2$$

$$= 0 + 0 + 4 \times 5 \times 3 = 60$$

$$C[2,3] = C[2,2] + C[3,3] + P_1 \cdot P_2 \cdot P_3$$

$$= 0 + 0 + 5 \times 3 \times 2 = 30$$

$$C[3,4] = C[3,3] + C[4,4] + P_2 \cdot P_3 \cdot P_4$$

$$= 0 + 0 + 3 \times 2 \times 7 = 42$$

Table 2: After First Diagonal

0	60		
	0	30	
		0	42
			0

The minimum is 70 when k = 1

$$\begin{split} C[2,4] &= C[2,2] + C[3,4] + P_1 \cdot P_2 \cdot P_4 \\ &= 0 + 42 + 5 \times 3 \times 7 \\ &= 42 + 105 = 147 \quad (k=2) \\ C[2,4] &= C[2,3] + C[4,4] + P_1 \cdot P_3 \cdot P_4 \\ &= 30 + 0 + 5 \times 2 \times 7 \\ &= 30 + 70 = 100 \quad (k=3) \end{split}$$

Table 3: After second diagonal computation

0	60	70	
	0	30	100
		0	42
			0

The minimum is 100 when k = 3. The matrix now appears as Table 3.

Now, C[1,4] is computed.

The minimum is 126 and this happens when k = 3.

Table 4: Final Table

0	60	70	126
	0	30	100
		0	42
			0

Table 5: Table of minimum k

0	1	1	3
	0	2	3
		0	3
			0

[A (B C) D]

Examples 13.11 Consider the following four matrices whose orders are given and perform chain matrix multiplication using the dynamic programming approach.

$$A$$
 B C D
 4×5 5×3 3×2 2×7
 p_0p_1 p_1p_2 p_2p_3 p_3p_4

Solution Four matrices are given. A table M is created to store the intermediate results. As per the algorithm, the entries of matrix M are initialized as follows:

$$M[1, 1] = 0; M[2, 2] = 0; M[3, 3] = 0; M[4, 4] = 0$$

The resultant Table 13.16 is an initial table.

Now, let us compute the first super diagonal as follows:

$$M[1, 2] = M[1, 1] + M[2, 2] + p_0 \cdot p_1 \cdot p_2$$

$$= 0 + 0 + 4 \times 5 \times 3 = 60$$

$$M[2, 3] = M[2, 2] + M[3, 3] + p_1 \cdot p_2 \cdot p_3$$

$$= 0 + 0 + 5 \times 3 \times 2 = 30$$

$$M[3, 4] = M[3, 3] + M[4, 4] + p_2 \cdot p_3 \cdot p_4$$

$$= 0 + 0 + 3 \times 2 \times 7 = 42$$

Table 13.16 Initial table

0			
	0		
		0	
			0

The resultant table is Table 13.17.

Table 13.17 After first diagonal

Next, the second super diagonal needs to be computed. This implies that M[1...3] needs to be computed. Two splits are possible, with k=1 and k=2. The resulting computation is as follows:

M[1, 3] = M[1, 1] + M	$[2,3] + p_0 \cdot p_1 \cdot p_3$
$= 0 + 30 + 4 \times$	5×2
=30+40=70	(k=1)
M[1, 3] = M[1, 2] + M	$[3,3]+p_0\cdot p_2\cdot p_3$
$= 60 + 0 + 4 \times$	3×2
= 84	(k = 2)

0	60		
	0	30	
		0	42
			0

The minimum is 70 when k = 1 Therefore, this must be noted in another table R. Thus, table R records k that gives the minimum cost. This process is repeated for other possibilities:

$$M[2, 4] = M[2, 2] + M[3, 4] + p_1 \cdot p_2 \cdot p_4$$

$$= 0 + 42 + 5 \times 3 \times 7$$

$$= 42 + 105 = 147 \quad (k = 2)$$

$$M[2, 4] = M[2, 3] + M[4, 4] + p_1 \cdot p_3 \cdot p_4$$

$$= 30 + 0 + 5 \times 2 \times 7$$

$$= 30 + 70 = 100 \quad (k = 3)$$

The minimum is 100 when k = 3.

The resultant matrix now appears as shown in Table 13.18. Now, M[1, 4] is computed. There are three possible splits for k. The possible splits and the resultant computation are as follows:

=70+56=126

Table 13.18 After second super diagonal computation

0	60	70	
	0	30	100
		0	42
			0

It can be observed that the minimum cost is 126 and this happens when k = 3. The resultant matrix is given in Table 13.19.

(k = 3)

As mentioned earlier, all values of k that yields the minimum cost is recorded in table R. The final resultant table that records the minimum k is Table 13.20.

Table 13.19 Final table

0	60	70	126
	0	30	100
		0	42
			0

Table 13.20 Table R of minimum k

0	1	1	3
	0	2	3
		0	3
			0

It can be observed that R(1, 4) is 3. Hence, the split is at point k = 3. This gives the order ((ABC)D). To split ABC, check R(1, 3); it is 2. Therefore, the final chain of matrix can be now represented as follows:

[A(BC)D]

Trace of k

```
Step 1: Read the trace matrix R that has minimum k, which yields the minimum cost. Step 2: Perform recursive call as follows:

If (i \neq j) then
k = R[i, j]
\text{return } (\text{mult}(R_{1...k}) \times \text{mult}(R_{k+1...n}))
\text{else}
\text{return}(R(i, j))
Step 3: End.
```

Complexity analysis

There are three for-loops in the algorithm, and each loop is executed n times. Therefore, the complexity of the algorithm is $\Theta(n^3)$.

Time complexity

Takes $O(n^3)$ time

Requires $O(n^2)$ space