Chapter 14

14.1 How many solutions are possible for a 4-Queen problem?

Solution:

There are 4! possibilities. But when constraints are imposed, the possibilities are reduced.

One possible solution is

		Q	
Q			
			Q
	Q		

14.2 Find the sum of subsets for the following set of integers

[5 10 25 50 100] for
$$w = 75$$
.

Solution:

Some of the possible solutions are

14.3 Find the sum of subsets for the following set of integers.

$$[1\ 2\ 3\ 5\ 6\ 7\ 8\ 9\ 10]$$
 for $w = 8$.

Solution:

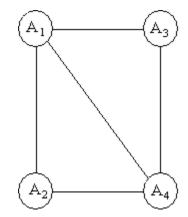

Some of the possible solutions are

[35]

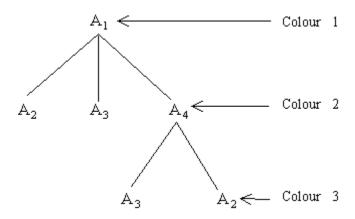
[62]

[71]

14.4 Colour the following graph.



Solution:

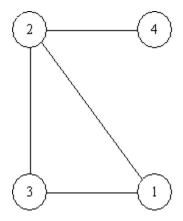

All nodes can be coloured uniquely. In that case, four coloured are required.

The optimal colours would be $\underline{2}$.

14.5 Colour the following graph using vertex colouring algorithm. What is the minimum colours required.

Solution:

: Minimum three colours are required.


14.6 What is the minimum numbers of coloured required to colour this bipartite graph. Justify the answer.

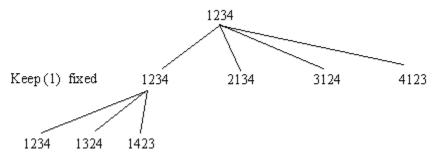
Solution:

The graph involved is bipartite graph. So two colours are required.

Any bipartite graph can be coloured with only two colours.

14.7 Show that the following graph, assuming that the initial vertex is 1, has no Hamiltonian cycle but only Hamiltonian path.

Solution:


The Hamiltonian path is 1-3-2-4. There is no cycle as node '2' is repeated twice. Therefore, there is no Hamiltonian cycle.

14.8 Does the following graph have a Hamiltonian Cycle. Justify the answer.

Solution:

The graph is a complete graph. Therefore, the Hamiltonian cycle exists.

- **14.9** Generate a permutation tree for the following sequence.
 - **a**) 1234

Generating like this, one get permutation as

```
1234 2134 3124 4123
1243 2143 3142 4132
1324 2413 3214 4312
1432 2431 3241 4321
1423 2314 3412 4231
1342 2341 3421 4213
There would be 4! = 4 \times 3 \times 2 \times 1
                 = 24
```

b) ABCD

By replacing 1 with A, 2 with B, 3 with C, 4 with D, one can get 24 combinations Again there would be 4! = 24 Combinations.